Chapter 1.5:
Object-Oriented Database
Development

Modern Database Management
6! Edition
Jeffrey A. Hoffer, Mary B. Prescott, Fred R.
McFadden

© Prentice Hall, 2002

Object Definition Language
(ODL)

Corresponds to SQL’s DDL (Data

Definition Language)

Specify the logical schema for an object-
oriented database

Based on the specifications of Object
Database Management Group (ODMG)

Chapter 15 :
© Prentice Hall, 2002

Defining a Class

class — keyword for defining classes
attribute — keyword for attributes

operations — return type, name, parameters
In parentheses

relationship — keyword for establishing
relationship

Chapter 15 :
© Prentice Hall, 2002

Defining an Attribute

Value can be either:
— Object identifier OR Literal
Types of literals

— Atomic — a constant that cannot be decomposed into components
— Collection — multiple literals or object types

— Structure — a fixed number of named elements, each of which could be a
literal or object type

Attribute ranges
— Allowable values for an attribute
— enum — for enumerating the allowable values

Chapter 15 : 4
© Prentice Hall, 2002

Kinds of Collections

Set — unordered collection without duplicates

Bag — unordered collection that may contain
duplicates

List — ordered collection, all the same type

Array — dynamically sized ordered collection,
locatable by position

Dictionary — unordered sequence of key-value
pairs without duplicates

Chapter 15 :
© Prentice Hall, 2002

Defining Structures

Structure = user-defined type with components
struct keyword

Example:

struct Address {
String street_address
String city;
String state;
String zip;

Chapter 15 :
© Prentice Hall, 2002

Defining Operations

Return type
Name
Parentheses following the name

Arguments within the
parentheses

Chapter 15 :
© Prentice Hall, 2002

Defining Relationships

Only unary and binary relationships allowed

Relationships are bi-directional
— Implemented through use of inverse keyword

ODL relationships are specified:
— relationship indicates that class is on many-side

— relationship set indicates that class is on one-side and
other class (many) instances unordered

— relationship list indicates that class is on one-side and
other class (many) instances ordered

Chapter 15 :
© Prentice Hall, 2002

Figure 15-1 —UML class diagram for a university database

Student Course Course
name Vg Crs6_code
GO A I L A Py
aﬁg Leess ‘ THenty section [orde[ed]‘ - credit_rs
p enrollment() enrollment()
ae() :
opa
register_for(crse, sec, term) grg)e Lf? :]:c;\;zurr;ge r?t| ; (tji%sni g?i;r;te the Has s }
UML diagram

{ Is prereq for

Chapter 15

© Prentice Hall, 2002

Figure 15-2 —ODL Schema for university database

Chapter 15

class Studant |

(

| =

extent students)

attribute string nams;

attribute Date dataOfBirth;

attribute Address address;

attribute Phone phone;

relationship set (CourseOffering) takes inverse CourseOftering: taken_by;
short age(};

float gpal):

boolean register_for(string crse, short sec. string term);

class CourseQffering {

{

k

extent courseofferings)
attribute string term;
attribute enum =section {1, 2, 3. 4, &, 8, 7, 8);

relationship set (Student) taken_by inverse Student::takes;
relationship Course belongs_to inverse Course:offers;
shart enrollment();

class Course {

(

extent courses)

attribute string crse_code;

attribute string crse_title;

attribute short cradit_hrs;

relationship set (Course) has_prereqs inverse Course:is_prereq_for;
relationship set (Course) is_prereq_for inverse Course:has_prereqgs;
relationship list (CourseOffering) offers inverse CourseOffering::belongs_fo;
shart enrollment();

© Prentice Hall, 2002

10

Figure 15-2 —ODL Schema for university database

Chapter 15

extent students)

attribute string nams;

attribute Date dataOfBirth;

attribute Address address;

attribute Phone phone;

relationship set (CourseOffering) takes inverse CourseOftering: taken_by;
short age(};

float gpal):

boolean register_for(string crse, short sec. string term);

class CourseQffering {

{

k

extent courseofferings) ;
attribute string term; class keyword begins
attribute enum section {1, 2, 3, 4, 5, 6, 7, 8); the class

relationship set (Student) taken_by inverse Student::takes; definition.Class

relationship Course belongs_to inverse Course:offers;
short enrollment] J; components enclosed

between { and }

class Course |

axtent courses)

attribute string crse_code;

attribute string crse_title;

attribute short cradit_hrs;

relationship set (Course) has_prereqs inverse Course:is_prereq_for;
relationship set (Course) is_prereq_for inverse Course:has_prereqgs;
relationship list (CourseOffering) offers inverse CourseOffering::belongs_fo;
shart enrollment();

© Prentice Hall, 2002

11

Figure 15-2 — ODL Schema for university database

Chapter 15

class Studant |

{

| =

extent students

:ﬁ:g:ﬁ g;ﬂ%';??&ai th attribute has a data type and a name
attribute Address address;

attribute Phone phone;

relationship set (CourseOffening) takes inverse CourseOftering: taken_by;

short age(};

float gpal):

boolean register_for(string crse, short sec. string term);

class CourseQffering {

(

k

Er.tent cnuruunlfurlma.,l

specify allowable values
al'l:rlhuta enum section {1, 2, & 4, 6, 6, 7, B using enum

relationship set (Student) taken_by inverse Student::takes;
relationship Course belongs_to inverse Course:offers;
shart enrollment();

class Course {

(

extent courses)

ffnibute string crse_code,
attribute string crse_title;
attribute short cradit_hrs;
relationship set (Course) has_prereqs inverse Course:is_prereq_for;
relationship set (Course) is_prereq_for inverse Course:has_prereqgs;
relationship list (CourseOffering) offers inverse CourseOffering::belongs_fo;
shart enrollment();

© Prentice Hall, 2002

12

Figure 15-2 —ODL Schema for university database

Chapter 15

extent = the set of all instances of the class
3 String nams,;
attribute Date dataOfBirth;
attribute Address address;
attribute Phone phone;
relationship set (CourseOffering) takes inverse CourseOftering: taken_by;
short age(};
float gpal):
boolean register_for(string crse, short sec. string term);

aftribute string
attribute enum sE-L.tlnnU 2,3, 4, 56,8, 7, 8%

relationship set (Student) taken_by inverse Student::takes;
relationship Course belongs_to inverse Course:offers;
shart enrollment();

attnhute string crse tIﬂE;

attribute short -:re:.irt_hrs:

relationship set (Course) has_prereqs inverse Course:is_prereq_for;
relationship set (Course) is_prereq_for inverse Course:has_prereqgs;
relationship list (CourseOffering) offers inverse CourseOffering::belongs_fo;
shart enrollment();

© Prentice Hall, 2002

13

Figure 15-2 —ODL Schema for university database

class Studant |
[extent students)
attribute string nams;
attribute Date dataOfBirth;
attribute Address address;
attribute Phone phone;
relationship set (CourseOffering) takes inverse CourseOftering: taken_by;
short age(); _ .
float gpal) Operation definition:
boolean register_for(string crse, short sec. string term); return type, name,

class CourseOffering { and argument list.

[extent courseofferings) Arguments include

Su L n e] S data types and names
attribute enum =section {1, 2, 3. 4, &, 8, 7, 8);

1

relahunshlp set (Student) taken_by inverse Student::takes;
slongs_to inverse Course:offers;

5hnrt anreliment()

class Course |
[extent courses)
attribute string crse_code;
attribute string crse_title;
attribute short cradit_hrs;
relationship set (Course) has_prereqs inverse Course:is_prereq_for;
relahunshlp set (Course) is_prereq_for inverse Course:has_prereqgs;

: wrsaQffering) offers inverse CourseOffering::belongs_to;
short enrcllment] };

Chapter 15 :
© Prentice Hall, 2002

14

Figure 15-2 —ODL Schema for university database

Chapter 15

class Studant |

(

| =

extent students)

attribute string nams;

attribute Date dataOfBirth;

attribute Address address;

attribute Phone phone;

relationship set (CourseOffening) takes inverse CourseOffening: taken_
short age(};

float gpal):

boolean register_for(string crse, short sec. string term);

relationship sets indicate 1:N relationship to an

class CourseOffering { | nordered collection of instances of the other class

(

k

class Course {

(

extent courseofferings)

attribute string tarm:

attribute enum =section {1, 2, 3, 4, &, &, 7, 8);

relationship set (Student) taken_by inverse Student::takes;
relationship Course belongs_to inverse Course:offers;
shart enrollment();

inverse establishes the bidirectionality of the relationship

extent courses)

attribute string crse_code;
attribute string crse_title;
al-trihuta shnrt cradit hrEr.

5hnrt anreliment()

© Prentice Hall, 2002

15

Figure 15-2 —ODL Schema for university database

Chapter 15

class Studant |

(

| =

extent students)

attribute string nams;

attribute Date dataOfBirth;

attribute Address address;

attribute Phone phone;

relationship set (CourseOffering) takes inverse CourseOftering: taken_by;
short age(};

float gpal):

boolean register_for(string crse, short sec. string term);

class CourseQffering {

(

k

(

extent courseofferings)

attribute string tarm:

attribute enum =section {1, 2, 3. 4, &, 8, 7, 8);

relationship set (Student) taken_by inverse Student::takes;
relationship Course belongs_to inverse Course:offers;
shart enrollment();

relationship list indicates 1:N relationship to an
class Course | ordered collection of instances of the other class

extent courses)

attribute string crse_code;

attribute string crse_title;

attribute short cradit_hrs;

ralahunshlp set {Cnur‘sa‘: haa Frrraruqs |n'u'&rs& Courseis_praraq lrJr

© Prentice Hall, 2002

16

Figure 15-2 —ODL Schema for university database

Chapter 15

class Studant |

(

| =

class CourseQffering {

(

k

extent students)

attribute string nams;

attribute Date dataOfBirth;

attribute Address address;

attribute Phone phone;

relationship set (CourseOffering) takes inverse CourseOftering: taken_by;
short age(};

float gpal):

boolean register_for(string crse, short sec. string term);

relationship indicates N:1 relationship to an

extent courseofferings) instance of the other class

attribute string tarm:
al'l:rlhuta anurrl sE-L.tlnnU 2,3, 4, 5 g7, E}

class Course {

(

extent courses)

attribute string crse_code;

attribute string crse_title;

attribute short cradit_hrs;

relationship set (Course) has_prereqs inverse Course:is_prereq_for;
relationship set (Course) is_prereq_for inverse Course:has_prereqgs;
relationship list (CourseOffering) offers inverse CourseOffering::belongs_fo;
shart enrollment();

© Prentice Hall, 2002

17

Figure 15-3 — UML class diagram for an employee project database

(a) Many-to-many relationship with an association class

Employee

Project

emp_id
name
address
salary
ate_hire
gender
skills

hire()
fire()
add_skill()

Chapter 15

Assignment

start_date
end_date
hours

assign(emp, proj)

© Prentice Hall, 2002

Note:

In order to
capture special
features of
assignment, this
should be
converted into
two 1:N
relationships

proj_id
proj_name
priority
begin_date
completion_date
skills_required

total_emp_hours()

Figure 15-3 — UML class diagram for an employee project database
(b) Many-to many relationship broken into two one-to-many relationships

Employee Project

Droj_id
DIO]_ame

emp_id

oo Assignment

aes Works on } slart_date prioy

)) ——

dae_hied Aot hOurS compltion_dale
(ender skills_required

skills assign(emp, proj)

total_emp_hours(

hiI'E() class Employee { Note:
| (extent employees key indicates indentifier
[][[J,() key emp_id) (candidate key)

Note: attribute set indicates a

add_skil : ing) ski ired:
- {) attribute set (string) skills_required; multivalued attribute

&

Chapter 15

© Prentice Hall, 2002

Figure 15-4
UML class diagram showing employee generalization

Employee

emp_number
name
address
salary
date_hired

print_label()
— A

employment employment ~_employment
type o
— — —— {disjoint, incomplate}

class Employee
extends Employee{ Hourly Salaried

Employee Employee Consultant

hourly_rate annual_salary contract_number
stock_option billing_rate

extends
denotes wages() contribute_pension() fees()

subclassing

Chapter 15

© Prentice Hall, 2002

Figure 15-5 —UML class diagram showing student generalization

Student

w

labstract }

stu_number
nane
dateOfBirth
address
phone

calc_tuition()

register_for(crse, sec, term)

{disjoint, complete}

Graduate
Student

undergrad_major
gre_score
gmat_score

calc_tuition()

Chapter 15

Takes }

4 Taken by

Undergrad
Student

sat_score
act_score

calc_tuition()

© Prentice Hall, 2002

o

Course
Offering

term
section

enrollment()

Note: abstract class denotes non-
instantiable (complete constraint)

abstract class Student
extends Employee{

abstract float calc_tuition();
}
Note: abstract operation denotes no
method (no implementation) of
calc_tuition at the Student level

Creating Object Instances

Specify a tag that will be the object identifier
— MBAG699 course ();

Initializing attributes:
— Cheryl student (name: “Cheryl Davis”, dateOfBirth:4/5/77);

Initializing multivalued attributes:

— Dan employee (emp id: 3678, name: “Dan Bellon”,
skills {“Database design”, “O0O
Modeling});
Establishing links for relationship

— Cheryl student (takes: {OOAD99F, Telecom99F, Java99F});

Chapter 15 : 22
© Prentice Hall, 2002

Querying Ohbjects In the OODB

Object Query Language (OQL)
ODMG standard language
Similar to SQL-92

Some differences:

— Joins use class’s relationship name:

» Select x.enrollment from courseofferings x, x.belongs toy
where y.crse _course = “MBA 664" and x.section = 1;

— Using a set in a query

o Select emp_id, name from employees where “Database
Design” in skills;

Chapter 15 : 23
© Prentice Hall, 2002

Current ODBMS Products

Rising popularity due to:

— CAD/CAM applications

— Geographic information systems
— Multimedia

— Web-based applications

— Increasingly complex data types

Applications of ODBMS

— Bill-of-material

— Telecommunications navigation
— Health care

— Engineering design

— Finance and trading

Chapter 15 :
© Prentice Hall, 2002

Table15-1 — ODBMS Products

Table 15-1 0DBMS Products
Company Product Web Site

Computer Associates Jasmine http:/fwww.cai.com/products/jasmine.htm
Franz AllegroSCL http:/fwww.franz.com

Gemstone Systems GemStone http://www.gemstone.com

neologic neocAccess http://neoclogic.com

Object Design ObjectStore hitp:/fwww.odi.com

Objectivity Objectivity/DB http://www.objectivity.com

FOET Software FOET Object Server http:/fwww.poet.com

Versant Versant ODBMS http://www.versant.com

Other Links Related to ODBMS Products

Barry & Associates http:/fwww.odbmsfacts.com
Doug Barry's The Object Database Handbook hitp://wiley.com
Object database newsgroup news://comp.databases.object

Rick Cattell's The Object Database Standard hitp:/fwww.mkp.com
ODMG 3.0

Object Database Management Group http://www.odmg.org

Chaudhri and and Zicari's Succeeding with http:/fwww.wiley.com/compbooks/chaudhri
Object Databases

Chapter 15

© Prentice Hall, 2002

