Chapter 1.3:
Distributed Databases

Modern Database Management

6! Edition
Jeffrey A. Hoffer, Mary B. Prescott, Fred R.
McFadden

© Prentice Hall, 2002

Definitions

Distributed Database: A single logical

database that iIs spread physically across
computers in multiple locations that are
connected by a data communications link

[Decentralized Database: A collection of
Independent databases on non-networked
computers

They are NOT the same thing!

Chapter 13 :
© Prentice Hall, 2002

Reasons for
Distributed Database

Business unit autonomy and distribution
Data sharing

Data communication costs

Data communication reliability and costs
Multiple application vendors

Database recovery

Transaction and analytic processing

Chapter 13 :
© Prentice Hall, 2002

Figure 13-1 -- Distributed database environments (adapted
from Bell and Grimson, 1992)

Distributed database environments

- N

Homogeneous Heterogeneous

O\ O\

Autonomous Non-Autonomous Systems Gateways

N

Full DBMS functionality Partial-Multidatabase

O\

Federated Unfederated

AN

Loose integration Tight integration

Chapter 13 :
© Prentice Hall, 2002

Distributed Database Options

Homogeneous - Same DBMS at each node

— Autonomous - Independent DBMSs

— Non-autonomous - Central , coordinating DBMS
— Easy to manage, difficult to enforce

Heterogeneous - Different DBMSs at different nodes
— Systems — with full or partial DBMS functionality

— Gateways - Simple paths are created to other databases
without the benefits of one logical database

— Difficult to manage, preferred by independent
organizations

Chapter 13 : 5
© Prentice Hall, 2002

Distributed Database Options

Systems - Supports some or all functionality of
one logical database

— Full DBMS Functionality - All dist. DB functions

— Partial-Multi-database - Some dist. DB functions

» Federated - Supports local databases for unique data
requests
— Loose Integration - Local dbs have their own schemas
— Tight Integration - Local dbs use common schema

o Unfederated - Requires all access to go through a central,
coordinating module

Chapter 13 : 6
© Prentice Hall, 2002

[Hemoegeneous, Non-
Autonomous Database

Data 1s distributed across all the nodes
Same DBMS at each node

All data Is managed by the distributed
DBMS (no exclusively local data)

All access Is through one, global schema

The global schema is the union of all the
local schema

Chapter 13 :
© Prentice Hall, 2002

Figure 13-2 — Homogeneous Database

Glabal User Global User

Distributed
DEMS

Identical DBMSs | |

MNode: 1

DBMS DBMS DBMS
Software Software Software

= H E

Source: adapted from Bell and Grimson, 1992.

Chapter 13

© Prentice Hall, 2002

Typical Heterogeneous
Envirenment

Data distributed across all the nodes
Different DBMSs may be used at each node

Local access iIs done using the local DBMS
and schema

Remote access Is done using the global schema

Chapter 13 : 9
© Prentice Hall, 2002

Figure 13-3 —Typical Heterogeneous Environment

Global User Local User

Local User

B

Distributed
DEMS

Non-identical DBMSs |

= = B

Source: adapted from Bell and Grimson, 1992.

Chapter 13

© Prentice Hall, 2002

Majoer Objectives

Location Transparency

— User does not have to know the location of the data.

— Data requests automatically forwarded to appropriate
sites

Local Autonomy

— Local site can operate with its database when network
connections fail

— Each site controls its own data, security, logging,
recovery

Chapter 13 : 11
© Prentice Hall, 2002

Significant Trade-Offs

Synchronous Distributed Database
— All copies of the same data are always identical

— Data updates are immediately applied to all copies
throughout network

— Good for data integrity

— High overhead =» slow response times
Asynchronous Distributed Database
— Some data inconsistency is tolerated

— Data update propagation is delayed

— Lower data integrity

— Less overhead =» faster response time

NOTE: all this assumes replicated data (to be discussed later)

Chapter 13 : 12
© Prentice Hall, 2002

Advantages of
Distributed Database over
Centralized Databases

Increased reliability/availability
Local control over data

Modular growth

Lower communication costs
Faster response for certain queries

Chapter 13 :
© Prentice Hall, 2002

13

Disadvantages of
Distributed Database
compared to
Centralized databases

Software cost and complexity
Processing overhead

Data integrity exposure

Slower response for certain queries

Chapter 13 : 14
© Prentice Hall, 2002

Options for
Distributing a Database

Data replication
— Copies of data distributed to different sites

Horizontal partitioning
— Different rows of a table distributed to different sites

Vertical partitioning

— Different columns of a table distributed to different
sites

Combinations of the above

Chapter 13 : 15
© Prentice Hall, 2002

Data Replication

Advantages -
— Reliability
— Fast response

— May avoid complicated distributed transaction integrity
routines (if replicated data is refreshed at scheduled
Intervals)

— De-couples nodes (transactions proceed even if some
nodes are down)

— Reduced network traffic at prime time (if updates can
be delayed)

Chapter 13 : 16
© Prentice Hall, 2002

Data Replication

Disadvantages -

— Additional requirements for storage space
— Additional time for update operations

— Complexity and cost of updating

— Integrity exposure of getting incorrect data if
replicated data is not updated simultaneously

liherefore, better when used for non-volatile
(read-only) data

Chapter 13 : 17
© Prentice Hall, 2002

TVpes of Data Replication

Push Replication —

—updating site sends changes to
other sites

Pull Replication —

—receiving sites control when
update messages will be
processed

Chapter 13 :
© Prentice Hall, 2002

18

Types of Push Replication

Snapshot Replication -

— Changes periodically sent to master site

— Master collects updates in log

— Full or differential (incremental) snapshots
— Dynamic vs. shared update ownership

Near Real-Time Replication -
— Broadcast update orders without requiring confirmation
— Done through use of triggers

— Update messages stored in message queue until
processed by recelving site

Chapter 13 : 19
© Prentice Hall, 2002

ISSuUesS for Data Replication

Data timeliness — high tolerance for out-of-date
data may be required

DBMS capabilities — if DBMS cannot support
multi-node queries, replication may be necessary

Performance implications — refreshing may cause
performance problems for busy nodes

Network heterogeneity — complicates replication

Network communication capabilities — complete
refreshes place heavy demand on
telecommunications

Chapter 13 : 20
© Prentice Hall, 2002

Horizental Partitioning

Different rows of a table at different sites

Advantages -

— Data stored close to where it is used =» efficiency
— Local access optimization =» better performance
— Only relevant data is available =» security

— Unions across partitions =» ease of query

Disadvantages

— Accessing data across partitions =» inconsistent access
speed

— No data replication =» backup vulnerability

Chapter 13 : 21
© Prentice Hall, 2002

\/ertical Partitioning

Different columns of a table at different
sites

Advantages and disadvantages are the same
as for horizontal partitioning except that
combining data across partitions is more
difficult because It requires joins (instead of
unions)

Chapter 13 : 22
© Prentice Hall, 2002

Figure 13-6
Distributed processing system for a manufacturing company

Corporate
rreganiframe

Corporate
database

T,

]

Engineer Manufac
ing furing

/ / \ “&Eﬂji"’ database
CAD/CAM workstations /
C

r."

Engineering
computer

Manufactuning
compirtes

AN

Loca
database

Chapter 13

© Prentice Hall, 2002

Five Distributed Database
Organizations

Centralized database, distributed access
Replication with periodic snapshot update

Replication with near real-time
synchronization of updates

Partitioned, one logical database

Partitioned, independent, non-integrated
segments

Chapter 13 : 24
© Prentice Hall, 2002

[Factors In Choice of
Distributed Strategy

Funding, autonomy, security

Site data referencing patterns

Growth and expansion needs
Technological capabilities

Costs of managing complex technologies
Need for reliable service

See table 13-1

Chapter 13 :
© Prentice Hall, 2002

25

Table 13-1: Distributed Design Strategies

Table 13-1 Comparison of Distributed Database Design Strategies

Etrategy
Cantralized

Rephcatesd
with
snapshots

Synchronized
repicahcn

Decentrahzed
with
indapandant
parthons

Reliability
POOR:

Highly dependant on
cartral server

GOOD:
Redundancy and
tolerated delays

EXCELLENT:
Redundancy
arid rminimal
clelays

VERY GOOD:
Efectve use of
partitcning and
raclndancy

GOOD:
Depends on only koal
catabasa avalability

Chapter 13

Exparchability
POOR:
Limitations are

barriers io
performmance

VERY GOOD:
Cioest of additional
copas may b less
than hinear

VERY GOOD:
Cost of addtional
copas may b low
ared synchronizaton
work only linesr
VERY GOOD:
Mew nodes get only
data thesy need
withcut changaes in
ovarall databazs
dasign

GOOD:

Mew sies
indapandant o
enaishing oress

Communicafions
Chvarhaad

VERY HIGH:
High rafhc to one site

LOW to MEDIUM:
Mot constant, but
pencdc snapshots
can cause bursts of
network traffic

MEDIUM:
Messages are
constant, but some
cialays are tolarated

LOW to MEDIUM:
Muost queries are local
bt queres which
racguire data from
rmiltiple sites can
CEUEA & temporany
load

LOW:

Litthe if any nead to
pase data or quenes
across tha network
iif one exsts)

© Prentice Hall, 2002

Mamageability

VERY GOOD:
Cma, monalithic site
requires little
coordination

VERY GOOD:
Each copy = like
ewery othar one

MEDIUM:
Collisicns add

S0ome compilemty
to manege sy

DIFFICULT:
Especially difficult for
queries that need data
trioem chstributed
tablas, and updatas
musi be tighthy
coardinated

VERY GOOD:

Easy for each sie,
until thera 1= a need 1o
share data across
sites

Dafa
Congiatency

EXCELLENT:
Al users ahways have
e data

MEDIUM:

Fine &s kong as delays
gre toleratad by
busmess needs

MEDIUM to
VERY GOOD:
Close to precisa
consistency

VERY POOR:
Considerable effort,
and Inconssiencies
niot tolerated

LOW:
Mo guarantess of
consistency, i feci

pratly sure of
InConsistancy

Distributed DBMS

Distributed database requires distributed DBMS

Functions of a distributed DBMS:
— Locate data with a distributed data dictionary

— Determine location from which to retrieve data and process
query components

— DBMS translation between nodes with different local
DBMSs (using middleware)

— Data consistency (via multiphase commit protocols)

— Global primary key control

— Scalability

— Security, concurrency, query optimization, failure recovery

Chapter 13 : 27
© Prentice Hall, 2002

Figure 13-10 — Distributed DBMS architecture

Distributed/
dala
repository

Distributed

(To other sites)

Distributed/
data
repository

Communications
controller

Communications
controller

Database

site 1

Chapter 13

© Prentice Hall, 2002

Distributed

Application
programs

Local Transaction Steps

1. Application makes request to distributed
DBMS

2. Distributed DBMS checks distributed data
repository for location of data. Finds that it
IS local

3. Distributed DBMS sends request to local
DBMS

4. Local DBMS processes request
5. Local DBMS sends results to application

Chapter 13 : 29
© Prentice Hall, 2002

Figure 13-10 — Distributed DBMS Architecture
showing Local Transaction Steps

Distribuled
data
reposilory

Distributed o

DBMS

Chapter 13

Database >
site 1

™1

nmmumm’tmns
controller

(To other sites)

Distributed/
data
rEDﬂSi[DI"_.‘

Communications
controller

Local transaction — all
data stored locally

© Prentice Hall, 2002

Distributed

Application
programs

DBMS

Glehal Transaction Steps

Application makes request to distributed DBMS

Distributed DBMS checks distributed data repository for
location of data. Finds that it Is remote

Distributed DBMS routes request to remote site

Distributed DBMS at remote site translates request for its
local DBMS if necessary, and sends request to local DBMS

Local DBMS at remote site processes request

Local DBMS at remote site sends results to distributed
DBMS at remote site

Remote distributed DBMS sends results back to originating
Site

Distributed DBMS at originating site sends results to
application

Chapter 13 31

© Prentice Hall, 2002

Figure 13-10 — Distributed DBMS architecture
showing global transaction steps

Distributed/
dala
repository

Distributed

N programs

3

(To other sites)

Distributed/
data
repository

Wistributed

yd

7
)mmunimtinns

Chapter 13

controller

Communications
controller

Global transaction — some

data iIs at remote site(s)

© Prentice Hall, 2002

Application
programs

Distributed DBMS
Transparency Objectives

Location Transparency
— User/application does not need to know where data resides

Replication Transparency
— User/application does not need to know about duplication

Failure Transparency
— Either all or none of the actions of a transaction are committed

— Each site has a transaction manager
» Logs transactions and before and after images
o Concurrency control scheme to ensure data integrity

— Requires special commit protocol

Chapter 13 : 33
© Prentice Hall, 2002

Two-Phase Commit

Prepare Phase
— Coordinator receives a commit request

— Coordinator instructs all resource managers to
get ready to “go either way” on the transaction.
Each resource manager writes all updates from
that transaction to its own physical log

— Coordinator receives replies from all resource
managers. If all are ok, It writes commit to its
own log; If not then it writes rollback to its log

Chapter 13 : 34
© Prentice Hall, 2002

Two-Phase Commit

Commit Phase

— Coordinator then informs each resource manager of its
decision and broadcasts a message to either commit or
rollback (abort). If the message is commit, then each
resource manager transfers the update from its log to its
database

— A failure during the commit phase puts a transaction “in
limbo.” This has to be tested for and handled with
timeouts or polling

Chapter 13 : 35
© Prentice Hall, 2002

Concurrency Control

Concurrency Transparency
— Design goal for distributed database
Timestamping
— Concurrency control mechanism
— Alternative to locks in distributed databases

Chapter 13 : 36
© Prentice Hall, 2002

Query Optimization

In a query involving a multi-site join and, possibly, a
distributed database with replicated files, the distributed
DBMS must decide where to access the data and how to

proceed with the join. Three step process:
1 Query decomposition - rewritten and simplified
2 Data localization - query fragmented so that fragments
reference data at only one site
3 Global optimization -
o Order in which to execute query fragments

o Data movement between sites
o Where parts of the query will be executed

Chapter 13 : 37
© Prentice Hall, 2002

Evolution of Distributed DBMS

“Unit of Work™ - All of a transaction’s steps.

Remote Unit of Work

— SQL statements originated at one location can be
executed as a single unit of work on a single remote
DBMS

Chapter 13 : 38
© Prentice Hall, 2002

Evolution of Distributed DBMS

Distributed Unit of Work

— Different statements in a unit of work may refer to
different remote sites

— All databases in a single SQL statement must be at a
single site
Distributed Request

— Assingle SQL statement may refer to tables in more
than one remote site

— May not support replication transparency or failure
transparency

Chapter 13 : 39
© Prentice Hall, 2002

