
1
© Prentice Hall, 2002

Chapter 13:

Distributed Databases

Modern Database Management

6th Edition

Jeffrey A. Hoffer, Mary B. Prescott, Fred R. 

McFadden



Chapter 13 2
© Prentice Hall, 2002

Definitions

Distributed Database: A single logical 

database that is spread physically across 

computers in multiple locations that are 

connected by a data communications link

 Decentralized Database: A collection of 

independent databases on non-networked 

computers

They are NOT the same thing!



Chapter 13 3
© Prentice Hall, 2002

Reasons for

Distributed Database

 Business unit autonomy and distribution

 Data sharing

 Data communication costs

 Data communication reliability and costs

 Multiple application vendors

 Database recovery

 Transaction and analytic processing



Chapter 13 4
© Prentice Hall, 2002

Figure 13-1 -- Distributed database environments (adapted 

from Bell and Grimson, 1992)



Chapter 13 5
© Prentice Hall, 2002

Distributed Database Options

 Homogeneous - Same DBMS at each node

– Autonomous - Independent DBMSs

– Non-autonomous - Central , coordinating DBMS

– Easy to manage, difficult to enforce

 Heterogeneous - Different DBMSs at different nodes

– Systems – with full or partial DBMS functionality

– Gateways - Simple paths are created to other databases 
without the benefits of one logical database

– Difficult to manage, preferred by independent 
organizations



Chapter 13 6
© Prentice Hall, 2002

Distributed Database Options

 Systems - Supports some or all functionality of 
one logical database

– Full DBMS Functionality - All dist. DB functions

– Partial-Multi-database - Some dist. DB functions

 Federated - Supports local databases for unique data 
requests

– Loose Integration - Local dbs have their own schemas

– Tight Integration - Local dbs use common schema

 Unfederated - Requires all access to go through a central, 
coordinating module



Chapter 13 7
© Prentice Hall, 2002

Homogeneous, Non-

Autonomous Database

 Data is distributed across all the nodes

 Same DBMS at each node

 All data is managed by the distributed 

DBMS (no exclusively local data)

 All access is through one, global schema

 The global schema is the union of all the 

local schema



Chapter 13 8
© Prentice Hall, 2002

Identical DBMSs

Figure 13-2 – Homogeneous Database

Source: adapted from Bell and Grimson, 1992.



Chapter 13 9
© Prentice Hall, 2002

Typical Heterogeneous 

Environment

 Data distributed across all the nodes

 Different DBMSs may be used at each node

 Local access is done using the local DBMS 

and schema

 Remote access is done using the global schema



Chapter 13 10
© Prentice Hall, 2002

Figure 13-3 –Typical Heterogeneous Environment

Non-identical DBMSs

Source: adapted from Bell and Grimson, 1992.



Chapter 13 11
© Prentice Hall, 2002

Major Objectives

 Location Transparency 

– User does not have to know the location of the data.

– Data requests automatically forwarded to appropriate 

sites

 Local Autonomy 

– Local site can operate with its database when network 

connections fail

– Each site controls its own data, security, logging, 

recovery



Chapter 13 12
© Prentice Hall, 2002

Significant Trade-Offs
 Synchronous Distributed Database

– All copies of the same data are always identical

– Data updates are immediately applied to all copies 
throughout network

– Good for data integrity

– High overhead  slow response times

 Asynchronous Distributed Database

– Some data inconsistency is tolerated

– Data update propagation is delayed

– Lower data integrity

– Less overhead  faster response time

NOTE: all this assumes replicated data (to be discussed later)



Chapter 13 13
© Prentice Hall, 2002

Advantages of

Distributed Database over 

Centralized Databases

 Increased reliability/availability

 Local control over data

 Modular growth

 Lower communication costs

 Faster response for certain queries



Chapter 13 14
© Prentice Hall, 2002

Disadvantages of

Distributed Database 

compared to 

Centralized databases

 Software cost and complexity

 Processing overhead

 Data integrity exposure

 Slower response for certain queries



Chapter 13 15
© Prentice Hall, 2002

Options for

Distributing a Database
 Data replication 

– Copies of data distributed to different sites

 Horizontal partitioning

– Different rows of a table distributed to different sites

 Vertical partitioning

– Different columns of a table distributed to different 
sites

 Combinations of the above



Chapter 13 16
© Prentice Hall, 2002

Data Replication

 Advantages -

– Reliability

– Fast response

– May avoid complicated distributed transaction integrity 
routines (if replicated data is refreshed at scheduled 
intervals)

– De-couples nodes (transactions proceed even if some 
nodes are down)

– Reduced network traffic at prime time (if updates can 
be delayed)



Chapter 13 17
© Prentice Hall, 2002

Data Replication

 Disadvantages -

– Additional requirements for storage space

– Additional time for update operations

– Complexity and cost of updating

– Integrity exposure of getting incorrect data if 

replicated data is not updated simultaneously

Therefore, better when used for non-volatile 

(read-only)  data



Chapter 13 18
© Prentice Hall, 2002

Types of Data Replication

Push Replication –

–updating site sends changes to 
other sites

Pull Replication –

– receiving sites control when 
update messages will be 
processed



Chapter 13 19
© Prentice Hall, 2002

Types of Push Replication

 Snapshot Replication -

– Changes periodically sent to master site 

– Master collects updates in log

– Full or differential (incremental) snapshots

– Dynamic vs. shared update ownership

Near Real-Time Replication -

– Broadcast update orders without requiring confirmation

– Done through use of triggers

– Update messages stored in message queue until 

processed by receiving site



Chapter 13 20
© Prentice Hall, 2002

Issues for Data Replication

 Data timeliness – high tolerance for out-of-date 
data may be required

 DBMS capabilities – if DBMS cannot support 
multi-node queries, replication may be necessary

 Performance implications – refreshing may cause 
performance problems for busy nodes

 Network heterogeneity – complicates replication

 Network communication capabilities – complete 
refreshes place heavy demand on 
telecommunications



Chapter 13 21
© Prentice Hall, 2002

Horizontal Partitioning

 Different rows of a table at different sites

 Advantages -

– Data stored close to where it is used  efficiency

– Local access optimization  better performance

– Only relevant data is available  security

– Unions across partitions  ease of query

 Disadvantages

– Accessing data across partitions  inconsistent access 
speed

– No data replication  backup vulnerability



Chapter 13 22
© Prentice Hall, 2002

Vertical Partitioning

 Different columns of a table at different 

sites

 Advantages and disadvantages are the same 

as for horizontal partitioning except that 

combining data across partitions is more 

difficult because it requires joins (instead of 

unions)



Chapter 13 23
© Prentice Hall, 2002

Figure 13-6 

Distributed processing system for a manufacturing company



Chapter 13 24
© Prentice Hall, 2002

Five Distributed Database 

Organizations

Centralized database, distributed access

Replication with periodic snapshot update

Replication with near real-time 

synchronization of updates

Partitioned, one logical database

Partitioned, independent, non-integrated 

segments



Chapter 13 25
© Prentice Hall, 2002

Factors in Choice of

Distributed Strategy

 Funding, autonomy, security

 Site data referencing patterns

 Growth and expansion needs

 Technological capabilities

 Costs of managing complex technologies

 Need for reliable service

See table 13-1



Chapter 13 26
© Prentice Hall, 2002

Table 13-1: Distributed Design Strategies



Chapter 13 27
© Prentice Hall, 2002

Distributed DBMS
 Distributed database requires distributed DBMS

 Functions of a distributed DBMS:

– Locate data with a distributed data dictionary

– Determine location from which to retrieve data and process 

query components

– DBMS translation between nodes with different local 

DBMSs (using middleware)

– Data consistency (via multiphase commit protocols)

– Global primary key control

– Scalability

– Security, concurrency, query optimization, failure recovery



Chapter 13 28
© Prentice Hall, 2002

Figure 13-10 – Distributed DBMS architecture



Chapter 13 29
© Prentice Hall, 2002

Local Transaction Steps

1. Application makes request to distributed 
DBMS

2. Distributed DBMS checks distributed data 
repository for location of data. Finds that it 
is local

3. Distributed DBMS sends request to local 
DBMS

4. Local DBMS processes request

5. Local DBMS sends results to application



Chapter 13 30
© Prentice Hall, 2002

Figure 13-10 – Distributed DBMS Architecture 

showing Local Transaction Steps

Local transaction – all 

data stored locally

1

3

4

5

2



Chapter 13 31
© Prentice Hall, 2002

Global Transaction Steps

1. Application makes request to distributed DBMS

2. Distributed DBMS checks distributed data repository for 
location of data. Finds that it is remote

3. Distributed DBMS routes request to remote site

4. Distributed DBMS at remote site translates request for its 
local DBMS if necessary, and sends request to local DBMS

5. Local DBMS at remote site processes request

6. Local DBMS at remote site sends results to distributed 
DBMS at remote site

7. Remote distributed DBMS sends results back to originating 
site

8. Distributed DBMS at originating site sends results to 
application



Chapter 13 32
© Prentice Hall, 2002

Figure 13-10 – Distributed DBMS architecture 

showing global transaction steps

Global transaction – some 

data is at remote site(s)

1

2

4

5

6

3

7

8



Chapter 13 33
© Prentice Hall, 2002

Distributed DBMS

Transparency Objectives
 Location Transparency

– User/application does not need to know where data resides

 Replication Transparency

– User/application does not need to know about duplication

 Failure Transparency

– Either all or none of the actions of a transaction are committed

– Each site has a transaction manager

 Logs transactions and before and after images

 Concurrency control scheme to ensure data integrity

– Requires special commit protocol



Chapter 13 34
© Prentice Hall, 2002

Two-Phase Commit

 Prepare Phase

– Coordinator receives a commit request

– Coordinator instructs all resource managers to 
get ready to “go either way” on the transaction.  
Each resource manager writes all updates from 
that transaction to its own physical log

– Coordinator receives replies from all resource 
managers.  If all are ok, it writes commit to its 
own log; if not then it writes rollback to its log



Chapter 13 35
© Prentice Hall, 2002

Two-Phase Commit

 Commit Phase

– Coordinator then informs each resource manager of its 

decision and broadcasts a message to either commit or 

rollback (abort).  If the message is commit, then each 

resource manager transfers the update from its log to its 

database

– A failure during the commit phase puts a transaction “in 

limbo.”  This has to be tested for and handled with 

timeouts or polling



Chapter 13 36
© Prentice Hall, 2002

Concurrency Control

Concurrency Transparency

– Design goal for distributed database

 Timestamping

– Concurrency control mechanism

– Alternative to locks in distributed databases



Chapter 13 37
© Prentice Hall, 2002

Query Optimization

 In a query involving a multi-site join and, possibly, a 
distributed database with replicated files, the distributed 
DBMS must decide where to access the data and how to 
proceed with the join.  Three step process:

1 Query decomposition - rewritten and simplified

2 Data localization - query fragmented so that fragments 
reference data at only one site

3 Global optimization -

 Order in which to execute query fragments

 Data movement between sites

 Where parts of the query will be executed



Chapter 13 38
© Prentice Hall, 2002

Evolution of Distributed DBMS

 “Unit of Work” - All of a transaction’s steps.

 Remote Unit of Work

– SQL statements originated at one location can be 

executed as a single unit of work on a single remote 

DBMS



Chapter 13 39
© Prentice Hall, 2002

Evolution of Distributed DBMS
 Distributed Unit of Work

– Different statements in a unit of work may refer to 
different remote sites

– All databases in a single SQL statement must be at a 
single site

 Distributed Request

– A single SQL statement may refer to tables in more 
than one remote site

– May not support replication transparency or failure 
transparency


