Chapter 11: Data Warehousing

Modern Database Management 6th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden

Definition

Data Warehouse:

- A subject-oriented, integrated, time-variant, nonupdatable collection of data used in support of management decision-making processes
- *Subject-oriented:* e.g. customers, patients, students, products
- *Integrated:* Consistent naming conventions, formats, encoding structures; from multiple data sources
- Time-variant: Can study trends and changes
- *Nonupdatable:* Read-only, periodically refreshed

Jata Mart:

– A data warehouse that is limited in scope

Need for Data Warehousing Integrated, company-wide view of high-quality information (from disparate databases) Separation of *operational* and *informational* systems and data (for improved performance)

Table 11-1: comparison of operational and informational systems

terre i i e emperiore el epocatione and informational ejocomo						
Characteristic	Operational Systems	Informational Systems				
Primary purpose	Run the business on a current basis	Support managerial decision making				
Type of data	Current representation of state of the business	Historical point-in-time (snapshots) and predictions				
Primary users	Clerks, salespersons, administrators	Managers, business analysts, customers				
Scope of usage	Narrow, planned, and simple updates and queries	Broad, ad hoc, complex queries and analysis				
Design goal	Performance throughput, availability	Ease of flexible access and use				
Volume	Many, constant updates and queries on one or a few table rows	Periodic batch updates and queries requiring many or all rows				

Table 11-1 Comparison of Operational and Informational Systems

Table 11-2: Data Warehouse vs. Data Mart

Table 11-2 Data Warehouse Versus Dat	ta Mart
Data Warehouse	Data Mart
Scope	Scope
 Application independent 	 Specific DSS application
 Centralized, possibly enterprise-wide 	 Decentralized by user area
 Planned 	 Organic, possibly not planned
Data	Data
 Historical, detailed, and summarized 	 Some history, detailed, and summarized
 Lightly denormalized 	 Highly denormalized
Subjects	Subjects
 Multiple subjects 	 One central subject of concern to users
Sources	Sources
 Many internal and external sources 	 Few internal and external sources
Other Characteristics	Other Characteristics
Flexible	Restrictive
 Data-oriented 	 Project-oriented
 Long life 	Short life
• Large	 Start small, becomes large
 Single complex structure 	 Multi, semi-complex structures, together complex
Adapted from Strange (1997)	

Source: adapted from Strange (1997).

Data Warehouse Architectures

- **Generic Two-Level Architecture**
- Independent Data Mart
- Dependent Data Mart and Operational Data Store
- Logical Data Mart and @ctive Warehouse Three-Layer architecture

All involve some form of *extraction*, *transformation* and *loading* (ETL)

Figure 11-2: Generic two-level architecture

Periodic extraction \rightarrow data is not completely current in warehouse

Figure 11-3: Independent Data Mart

Data marts: Mini-warehouses, limited in scope

independent data mart

due to *multiple* data marts

Figure 11-4: *Dependent* data mart with *operational data store*

ODS provides option for obtaining *current* data

Single ETL for enterprise data warehouse (EDW)

Dependent data marts loaded from EDW

Chapter 11

© Prentice Hall, 2002

Figure 11-5: Logical data mart and @ctive data warehouse

ODS and **data warehouse**

- are one and the same

Near real-time ETL for @active Data Warehouse

Data marts are NOT separate databases, but logical *views* of the data warehouse → Easier to create new data marts

Chapter 11

© Prentice Hall, 2002

Figure 11-6: Three-layer architecture

Data Characteristics Status vs. Event Data

Figure 11-7: Example of DBMS log entry

Ţ	Table X (10/01)					
	Key	A	в			
	001	a	b			
	002	с	d			
	003	θ	f			
	004	g	h			

Table X (10/02)						
	Key	Α	в			
	001	a	ь			
•	002	r	d			
	003	6	f			
•	004	у	h			
•	005	m	n			

Data Characteristics Transient vs. Periodic Data

Figure 11-8: Transient operational data

Changes to existing records are written over previous records, thus destroying the previous data content

Data Characteristics Transient vs. Periodic Data

Figure 11-9: Periodic warehouse data

Data are never physically altered or deleted once they have been added to the store

Table X (1	able X (10/01)						
Key	Date	A	в	Action			
001	10/01	п	ь	С			
002	10/01	c	d	С			
003	10/01		f	С			
004	10/01	9	h	С			

	Table X (10/02)							
	Key	Date	A	в	Action			
	001	10/01	8	b	С			
	002	10/01	ċ	d	С			
•	002	10/02	r	d	U			
	003	10/01	ú	f	С			
	004	10/01	9	h	С			
•	004	10/02	У	h	U			
•	005	10/02	m	n	С			

	Table X (10/03)							
	Key	Date	Α	в	Action			
	001	10/01	a	b	С			
	002	10/01	٥	d	С			
	002	10/02	r	d	U			
	003	10/01	0	f	С			
•	003	10/03	ė.	1	U			
	004	10/01	9	h	С			
	004	10/02	у	h	U			
•	004	10/03	У	h	D			
	005	10/02	m	n	С			

Data Reconciliation

Typical operational data is:

- Transient not historical
- Not normalized (perhaps due to denormalization for performance)
- Restricted in scope not comprehensive
- Sometimes poor quality inconsistencies and errors
- After ETL, data should be:
- Detailed not summarized yet
- Historical periodic
- Normalized 3rd normal form or higher
- Comprehensive enterprise-wide perspective
- Quality controlled accurate with full integrity

The ETL Process

Capture Scrub or data cleansing Transform Load and Index **ETL = Extract, transform, and load**

Figure 11-10: Steps in data reconciliation

Static extract = capturing a snapshot of the source data at a point in time

Incremental extract = capturing changes that have occurred since the last static extract

Chapter 11

© Prentice Hall, 2002

Figure 11-10: Steps in data reconciliation (continued)

Fixing errors: misspellings, erroneous dates, incorrect field usage, mismatched addresses, missing data, duplicate data, inconsistencies Also: decoding, reformatting, time stamping, conversion, key generation, merging, error detection/logging, locating missing data

Chapter 11

© Prentice Hall, 2002

Figure 11-10: Steps in data reconciliation (continued)

Record-level:

Selection – data partitioning Joining – data combining Aggregation – data summarization

Field-level:

single-field – from one field to one field *multi-field* – from many fields to one, or one field to many

Figure 11-10: Steps in data reconciliation (continued)

Refresh mode: bulk rewriting of target data at periodic intervals

Update mode: only changes in source data are written to data warehouse

Figure 11-11: Single-field transformation

Figure 11-12: Multifield transformation

 Product_ID
 Product_Code
 Location

 I:M -from one source field to many target fields

 Target Record

 Product_ID

 Brand_Name
 Product_Name

Derived Data

Objectives

- Ease of use for decision support applications
- Fast response to predefined user queries
- Customized data for particular target audiences
- Ad-hoc query support
- Data mining capabilities
- → Characteristics
- Detailed (mostly periodic) data
- Aggregate (for summary)
- Distributed (to departmental servers)

Most common data model = **star schema** (also called "dimensional model")

Figure 11-13: Components of a star schema

Excellent for ad-hoc queries, but bad for online transaction processing

Chapter 11

© Prentice Hall, 2002

Figure 11-14: Star schema example

Figure 11-15: Star schema with sample data

Product								Period	
Product _Code	Description	Color	Size					Period _Code	Year
100 110 125 •••	Sweater Shoes Gloves	Blue Brown Tan	40 10 1/2 M					001 002 003	1999 1999 1999
				_					
			Produc _Code	t <u>Period</u> _Code	<u>d</u> <u>Store</u> <u>_Code</u>	Units _Sold	Dollars _Sold	Dollars _Cost	
		Sales	110 125 100	002 003 001	S1 S2 S1	30 50 40	1500 1000 1600	1200 600 1000	
			110 100 •••	002 003	S3 S2	40 30	2000 1200	1200 750	
				·					
			Store _Code	Store _Name	City	Tele	ephone	Manager	
		Store	S1 S2 S3	Jan's Bill's Ed's	San Antonic Portland Boulder	0 683-1 943-6 417-1	192-1400 881-2135 196-8037	Burgess Thomas Perry	

Chapter 11

Quarter

1

1

1

Month

4

5

6

Issues Regarding Star Schema

Dimension table keys must be *surrogate* (nonintelligent and non-business related), because:

- Keys may change over time
- Length/format consistency

Granularity of Fact Table – what level of detail do you want?

- Transactional grain finest level
- Aggregated grain more summarized
- Finer grains → better *market basket analysis* capability
- Finer grain \rightarrow more dimension tables, more rows in fact table

Figure 11-16: Modeling dates

→ Date dimensions are important

Chapter 11

© Prentice Hall, 2002

The User Interface Metadata (data catalog)

Identify subjects of the data mart **Identify dimensions and facts** Indicate how data is derived from enterprise data warehouses, including derivation rules Indicate how data is derived from operational data store, including derivation rules Identify available reports and predefined queries Identify data analysis techniques (e.g. drill-down) Identify responsible people

On-Line Analytical Processing (OLAP)

The use of a set of graphical tools that provides users with multidimensional views of their data and allows them to analyze the data using simple windowing techniques

Relational OLAP (ROLAP)

- Traditional relational representation
- Multidimensional OLAP (MOLAP)
 - Cube structure
- **OLAP** Operations
 - *Cube slicing* come up with 2-D view of data
 - Drill-down going from summary to more detailed views

Figure 11-22: Slicing a data cube

Figure 11-23: Example of drill-down

Summary report

Brand	Package size	Sales
SofTowel	2-pack	\$75
SofTowel	3-pack	\$100
SofTowel	6-pack	\$50

Drill-down with color added

Brand	Package size	Color	Sales
SofTowel	2-pack	White	\$30
SofTowel	2-pack	Yellow	\$25
SofTowel	2-pack	Pink	\$20
SofTowel	3-pack	White	\$50
SofTowel	3-pack	Green	\$25
SofTowel	3-pack	Yellow	\$25
SofTowel	6-pack	White	\$30
SofTowel	6-pack	Yellow	\$20

Data Mining and Visualization

Knowledge discovery using a blend of statistical, AI, and computer graphics techniques

- Goals:
- Explain observed events or conditions
- Confirm hypotheses
- Explore data for new or unexpected relationships

Techniques

- Case-based reasoning
- Rule discovery
- Signal processing
- Neural nets
- Fractals

Data visualization – representing data in graphical/multimedia formats for analysis