Chapter 9: The Client/Server Database Environment

Modern Database Management 6th Edition Jeffrey A. Hoffer, Mary B. Prescott, Fred R. McFadden

Client/Server Systems

Networked computing model Processes distributed between clients and servers Client – Workstation (usually a PC) that requests and uses a service Server – Computer (PC/mini/mainframe) that provides a service For DBMS, server is a database server

Application Logic in C/S Systems

Presentation Logic
Input – keyboard/mouse
Output – monitor/printer
Processing Logic
I/O processing
Business rules
Data management
Storage Logic

Data storage/retrieval

GUI Interface

Procedures, functions, programs

DBMS activities

Client/Server Architectures

File Server Architecture

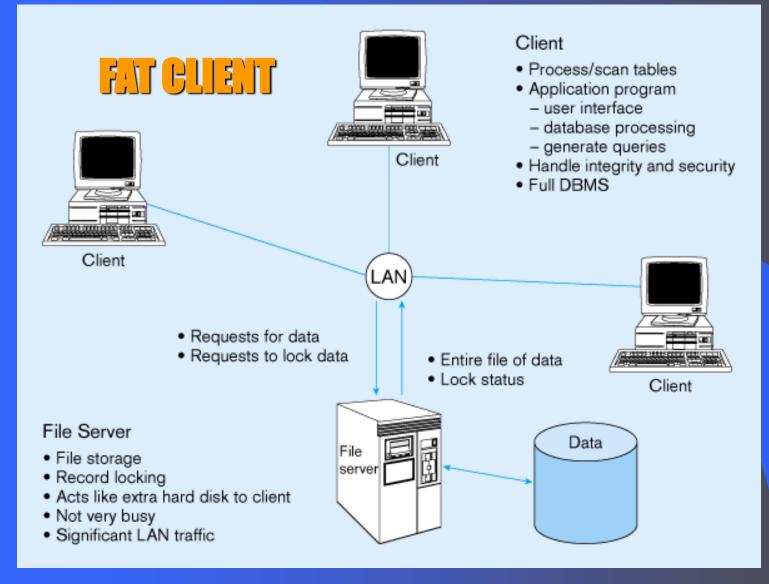
Database Server Architecture

Three-tier Architecture

Client does extensive processing

> Client does little processing

File Server Architecture


All processing is done at the PC that requested the data

Entire files are transferred from the server to the client for processing.

Problems:

- Huge amount of data transfer on the network
- Each client must contain full DBMS
 - Heavy resource demand on clients
 - Client DBMSs must recognize shared locks, integrity checks, etc.

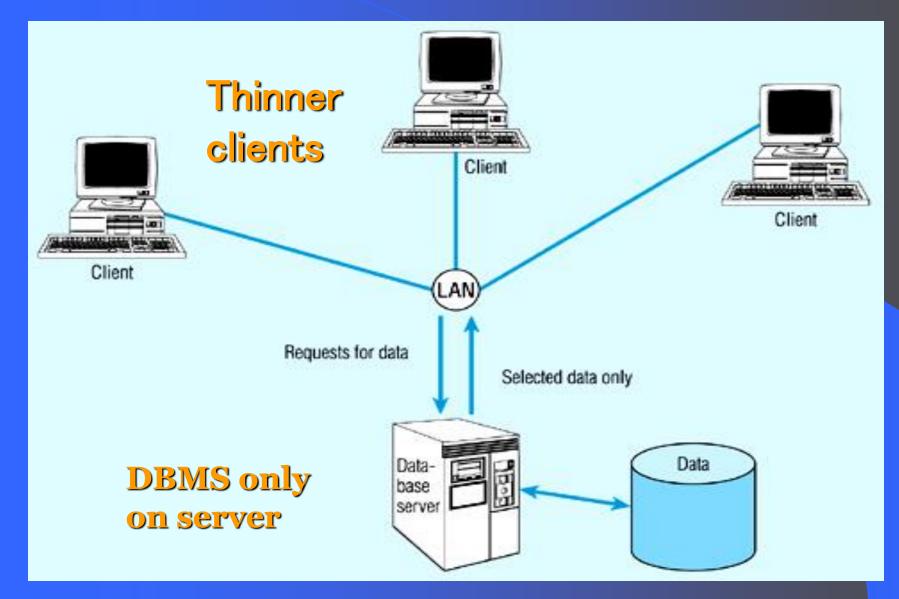
Figure 9-2 – File Server Architecture

Database Server Architectures

2-tiered approach

Client is responsible for

- I/O processing logic
- Some business rules logic


Server performs all data storage and access processing → DBMS is only on server

Advantages

- Clients do not have to be as powerful
- Greatly reduces data traffic on the network
- Improved data integrity since it is all processed centrally

Advantages of **Stored Procedures Compiled SQL statements Reduced** network traffic Improved security Improved data integrity Thinner clients

Figure 9-3 – Database server architecture

Chapter 9

Three-Tier Architectures

Three layers:

- Client
- Application server

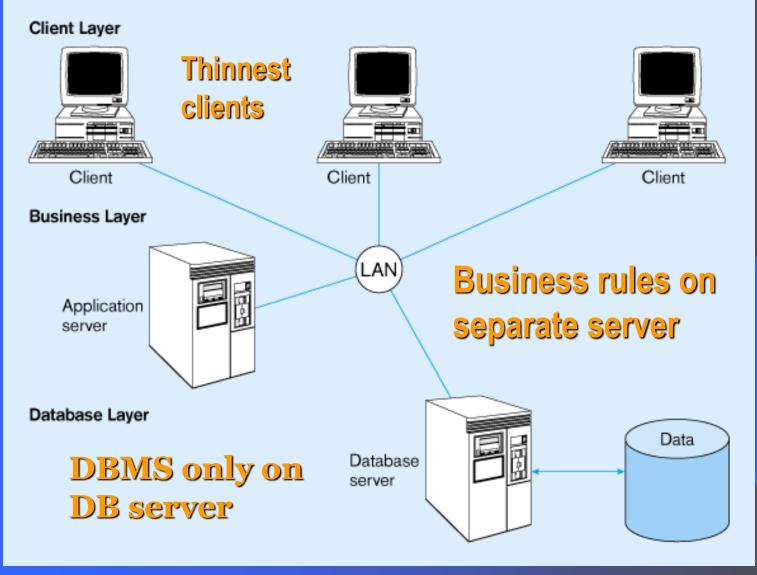
Database server

GUI interface (I/O processing)

Business rules

Data storage

Browser


Web Server

DBMS

Thin Client

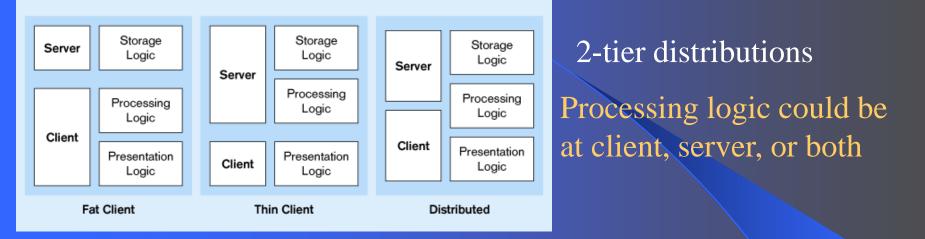
PC just for user interface and a little application processing. Limited or no data storage (sometimes no hard drive)

Figure 9-4 -- Three-tier architecture

Advantages of Three-Tier Architectures

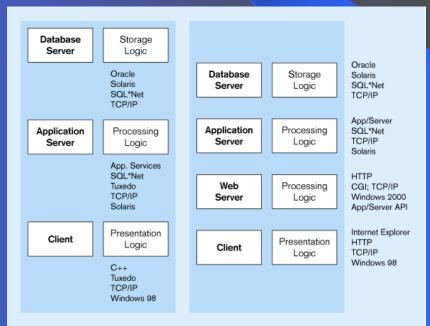
Scalability **Technological** flexibility Long-term cost reduction Better match of systems to business needs Improved customer service **Competitive** advantage **Reduced** risk

Challenges of Three-tier Architectures High short-term costs **Tools and training** Experience **Incompatible** standards Lack of compatible end-user tools


Application Partitioning

Placing portions of the application code in different locations (client vs. server) AFTER it is written

Advantages


- Improve performance
- Improve interoperability
- Balanced workloads

Processing Logic Distributions

Processing logic will be at application server or Web server

n-tier distributions

Parallel Computer Architectures

Tightly Coupled

- Symmetric Multiprocessing (SMP)
- Multiple CPUs
- Shared RAM
- Loosely Coupled
 - Massively Parallel Processing (MPP)
 - Multiple CPUs
 - Each CPU has its own RAM space

Parallel Computer Architectures

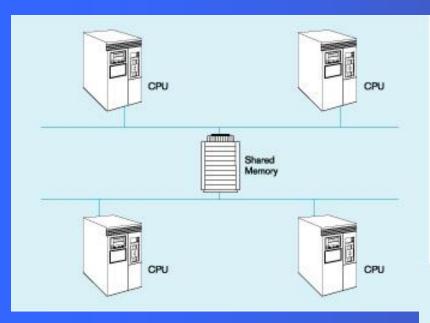
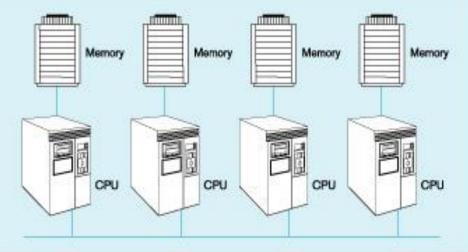



Figure 9-6 – Tightly-coupled – CPUs share common memory space

Figure 9-7 – Loosely-coupled – CPUs each have their own memory space

Query Processing with Parallel Processors

Figure 9-5(a) – Parallel transactions



Figure 9-5(b) – Parallel query

Middleware

Software which allows an application to *interoperate* with other software No need for programmer/user to understand internal processing Accomplished via *Application Program Interface* (API)

The "glue" that holds client/server applications together

Types of Middleware

RPC – Remote Procedure Calls (RPC)

- client makes calls to procedures running on remote computers
- synchronous and asynchronous
- Message-Oriented Middleware (MOM)
- asynchronous calls between the client via message queues
 Publish/Subscribe
 - push technology \rightarrow server sends information to client when available
- **Object Request Broker (ORB)**
 - Object-oriented management of communications between clients and servers
- SQL-oriented Data Access

Middleware between applications and database servers

Database Middleware

ODBC – Open Database Connectivity – Most DB vendors support this **OLE-DB** Microsoft enhancement of ODBC JDBC – Java Database Connectivity – Special Java classes that allow Java applications/applets to connect to databases

Client/Server Security Network environment → complex security issues

- Security levels:
 - System-level password security
 - for allowing access to the system
 - Database-level password security
 - for determining access privileges to tables; read/update/insert/delete privileges
 - Secure client/server communication
 - via encryption

Query-by-Example (QBE)

Direct-manipulation database language **Graphical** approach Available in MS Access MS Access translates QBE to SQL and vice versa Useful for end-user database programming Good for ad hoc processing and prototyping

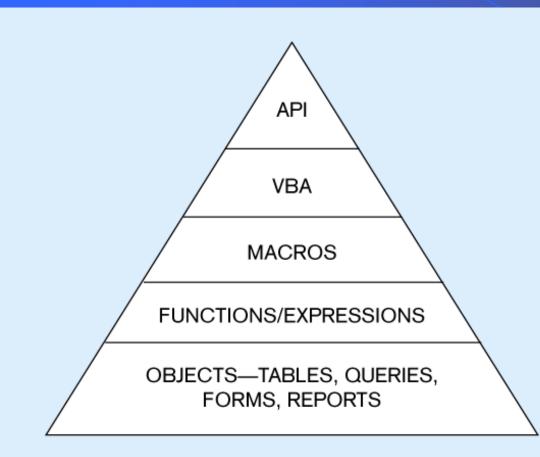

	ft Access - [On	der_line_prod	ucts_q : Select Que	uy]			_ 5 ×
B Elle Ed	dit View Insert	Query Tools	Window Help				<u>_5×</u>
	627	1 BB	් හ බු- !	ο <u>.</u> Σ ΑΙ .	四小 回泡	. 2.	
Proc Proc Proc	duct_Line_Id duct_Id duct_Descript duct_Pinish ndard_Price	Crder_L	I Jd				<u>م</u>
100							
Field:	Order Id	Product_Id	Ordered_Quantity	Product_Description	Product_Finish	Standard_Price	Extended Price: [O
	Order_Id ×	Product_Id Order_line_t	Ordered_Quantity Order_line_t	Product_Description PRODUCT_t	Product_Finish PRODUCT_t	Standard_Price PRODUCT_t	

Figure 9-10: QBE view of a 2-table join query

Access - [Order_line_products_q : Select Query]							
🗗 Elle Edit View Insert Query Icols Window Help	_1 <u>8</u>	U×					
□ - □	「西海・田、						
SELECT Order_line_t.Order_Id, Order_line_t.Product_Id, Order_line_t.Ordered_Quantity, PRODUCT_t.P PRODUCT_t.Standard_Price, [Order_line_t]![Ordered_Quantity]*[PRODUCT_t]![Standard_Price] AS [Ext FROM PRODUCT_t INNER JOIN Order_line_t ON PRODUCT_t.Product_Id = Order_line_t.Product_Id;							
Ready		Í					

Figure 9-12: Equivalent query in SQL

Figure 9-9: Access usability hierarchy

API to call functions in DLLs external to MS Access

Visual Basic for Applications...language for customizing the application Stored modules of preexisting VBA code

Simple processes

Foundation of MS Access

Using ODBC to Link External Databases Stored on a Database Server

Open Database Connectivity (ODBC)

 API that provides a common language for application programs to access and process SQL databases independent of the particular RDBMS that is accessed

Required parameters:

- ODBC driver
- Back-end server name
- Database name
- User id and password

Additional information:

- Data source name (DSN)
- Windows client computer name
- Client application program's executable name

Java Database Connectivity (JDBC) is similar to ODBC – built specifically for Java applications

ODBC Architecture (Figure 9-18)

Visual Basic for Applications

VBA is the programming language that accompanies Access 2000

VBA provides these features:

- Ability to perform complex functionality
- Error handling
- Faster execution than macros
- Easier maintenance
- OLE automation
- Programmatic control
- Ease of reading for programmers

Event-driven – nonprocedural programming that detects events and generates appropriate responses