
1
© Prentice Hall, 2002

Chapter 8:

Advanced SQL

Modern Database Management

6th Edition

Jeffrey A. Hoffer, Mary B. Prescott, Fred R.

McFadden

Chapter 8 2
© Prentice Hall, 2002

Processing Multiple Tables – Joins
 Join – a relational operation that causes two or more tables with a common

domain to be combined into a single table or view

 Equi-join – a join in which the joining condition is based on equality

between values in the common columns; common columns appear redundantly
in the result table

 Natural join – an equi-join in which one of the duplicate columns is

eliminated in the result table

 Outer join – a join in which rows that do not have matching values in

common columns are nonetheless included in the result table (as opposed to
inner join, in which rows must have matching values in order to appear in the
result table)

 Union join – includes all columns from each table in the join, and an

instance for each row of each table

The common columns in joined tables are usually the primary key of the

dominant table and the foreign key of the dependent table in 1:M relationships.

Chapter 8 3
© Prentice Hall, 2002

Figure 7-3 revisited: Sample Pine Valley Furniture data

customers
orders

order lines

products

Chapter 8 4
© Prentice Hall, 2002

 For each customer who placed an order, what is the
customer’s name and order number?

 SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME, ORDER_ID

 FROM CUSTOMER_T, ORDER_T

 WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID

Join involves multiple

tables in FROM clause

Natural Join Example

WHERE clause performs the

equality check for common

columns of the two tables

Chapter 8 5
© Prentice Hall, 2002

 List the customer name, ID number, and order number for
all customers. Include customer information even for
customers that do have an order

 SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME, ORDER_ID

 FROM CUSTOMER_T, LEFT OUTER JOIN ORDER_T

 WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_T.CUSTOMER_ID

Outer Join Example

LEFT OUTER JOIN

syntax will cause

customer data to appear

even if there is no

corresponding order data

Chapter 8 6
© Prentice Hall, 2002

 Assemble all information necessary to create an invoice for
order number 1006

 SELECT CUSTOMER_T.CUSTOMER_ID, CUSTOMER_NAME,
CUSTOMER_ADDRESS, CITY, SATE, POSTAL_CODE,
ORDER_T.ORDER_ID, ORDER_DATE, QUANTITY, PRODUCT_NAME,
UNIT_PRICE, (QUANTITY * UNIT_PRICE)

 FROM CUSTOMER_T, ORDER_T, ORDER_LINE_T, PRODUCT_T

 WHERE CUSTOMER_T.CUSTOMER_ID = ORDER_LINE.CUSTOMER_ID
AND ORDER_T.ORDER_ID = ORDER_LINE_T.ORDER_ID

AND ORDER_LINE_T.PROEUCT_ID = PRODUCT_PRODUCT_ID

AND ORDER_T.ORDER_ID = 1006;

Four tables involved in this

join

Multiple Table Join Example

Each pair of tables requires an equality-check

condition in the WHERE clause, matching

primary keys against foreign keys

Chapter 8 7
© Prentice Hall, 2002

Figure 8-1 – Results from a four-table join

From CUSTOMER_T table

From ORDER_T table From PRODUCT_T table

Chapter 8 8
© Prentice Hall, 2002

Processing Multiple Tables --

Subqueries
 Subquery = placing an inner query (SELECT

statement) inside an outer query

 Options:

– In a condition of the WHERE clause

– As a “table” of the FROM clause

– Within the HAVING clause

 Subqueries can be:

– Non correlated – execute once for the entire outer query

– Correlated – execute once for each row returned by the
outer query

Chapter 8 9
© Prentice Hall, 2002

 Show all customers who have placed an order

 SELECT CUSTOMER_NAME FROM CUSTOMER_T

 WHERE CUSTOMER_ID IN

(SELECT DISTINCT CUSTOMER_ID FROM ORDER_T);

Subquery Example

Subquery is embedded in

parentheses. In this case it

returns a list that will be

used in the WHERE clause

of the outer query

The IN operator will test to see if the

CUSTOMER_ID value of a row is

included in the list returned from the

subquery

Chapter 8 10
© Prentice Hall, 2002

Correlated vs. Noncorrelated

Subqueries

 Non-correlated subqueries:

– Do not depend on data from the outer query

– Executes once for the entire outer query

 Correlated subqueries:

– Does make use of data from the outer query

– Executes once for each row of the outer query

– Can make use of the EXISTS operator

Chapter 8 11
© Prentice Hall, 2002

Figure 8-2(a) –

Processing a

noncorrelated

subquery No reference to data

in outer query, so

subquery executes

once only

Chapter 8 12
© Prentice Hall, 2002

 Show all orders that include furniture finished in natural ash

 SELECT DISTINCT ORDER_ID FROM ORDER_LINE_T

 WHERE EXISTS

(SELECT * FROM PRODUCT_T

WHERE PRODUCT_ID = ORDER_LINE_T.PRODUCT_ID

AND PRODUCT_FINISH = ‘Natural ash’);

Correlated Subquery Example

The subquery is testing for a value

that comes from the outer query

The EXISTS operator will return a

TRUE value if the subquery resulted

in a non-empty set, otherwise it

returns a FALSE

Chapter 8 13
© Prentice Hall, 2002

Figure 8-2(b)

– Processing a

correlated

subquery
Subquery refers to outer-query data, so executes

once for each row of outer query

Chapter 8 14
© Prentice Hall, 2002

 Show all orders that include furniture finished in natural ash

 SELECT PRODUCT_DESCRIPTION, STANDARD_PRICE, AVGPRICE

 FROM

(SELECT AVG(STANDARD_PRICE) AVGPRICE FROM PRODUCT_T),

PRODUCT_T

WHERE STANDARD_PRICE > AVG_PRICE;

Subquery Example – Using a

Derived Table

The WHERE clause normally cannot include aggregate functions, but because the aggregate is

performed in the subquery its result can be used in the outer query’s WHERE clause

One column of the subquery is an

aggregate function that has an alias

name. That alias can then be referred

to in the outer query

Subquery forms the derived table used

in the FROM clause of the outer query

Chapter 8 15
© Prentice Hall, 2002

Ensuring Transaction Integrity

 Transaction = A discrete unit of work that must be
completely processed or not processed at all

– May involve multiple updates

– If any update fails, then all other updates must be
cancelled

 SQL commands for transactions

– BEGIN TRANSACTION/END TRANSACTION

 Marks boundaries of a transaction

– COMMIT

 Makes all updates permanent

– ROLLBACK

 Cancels updates since the last COMMIT

Chapter 8 16
© Prentice Hall, 2002

Figure 8-4: An SQL Transaction sequence (in pseudocode)

Chapter 8 17
© Prentice Hall, 2002

Data Dictionary Facilities

 System tables that store metadata

 Users usually can view some of these tables

 Users are restricted from updating them

 Examples in Oracle8i

– DBA_TABLES – descriptions of tables

– DBA_CONSTRAINTS – description of constraints

– DBA_USERS – information about the users of the
system

– DBA_TAB_PRIVS – descriptions of grants on objects
in the database

Chapter 8 18
© Prentice Hall, 2002

SQL-99 Enhancements/Extensions

 User-defined data types (UDT)

– Subclasses of standard types or an object type

 Analytical functions (for OLAP)

 Persistent Stored Modules (SQL/PSM)

– Capability to create and drop code modules

– New statements:

 CASE, IF, LOOP, FOR, WHILE, etc.

 Makes SQL into a procedural language

 SQL-99 Standard not widely adopted yet

 Oracle has propriety version called PL/SQL

Chapter 8 19
© Prentice Hall, 2002

Routines and Triggers

 Routines

– Program modules that execute on demand

– Functions – routines that return values and take
input parameters

– Procedures – routines that do not return values
and can take input or output parameters

 Triggers

– Routines that execute in response to a database
event (INSERT, UPDATE, or DELETE)

Chapter 8 20
© Prentice Hall, 2002

Figure 8-5: Triggers contrasted with stored procedures

Procedures are called explicitly

Triggers are event-driven

Source: adapted from Mullins, 1995.

Chapter 8 21
© Prentice Hall, 2002

Figure 8-6: Oracle PL/SQL trigger syntax

Figure 8-7: SQL-99 Create routine syntax

Chapter 8 22
© Prentice Hall, 2002

Embedded and Dynamic SQL

 Embedded SQL

– Including hard-coded SQL statements in a

program written in another language such as C

or Java

 Dynamic SQL

– Ability for an application program to generate

SQL code on the fly, as the application is

running

