
1
© Prentice Hall, 2002

Chapter 6:

Physical Database Design

and Performance

Modern Database Management

6th Edition

Jeffrey A. Hoffer, Mary B. Prescott, Fred R.

McFadden

Chapter 6 2
© Prentice Hall, 2002

The Physical Design Stage of SDLC

(figures 2.4, 2.5 revisited)

Project Identification

and Selection

Project Initiation

and Planning

Analysis

Physical Design

Implementation

Maintenance

Logical Design

Purpose –develop technology specs

Deliverable – pgm/data structures,

technology purchases, organization

redesigns

Database activity –

physical database design

Chapter 6 3
© Prentice Hall, 2002

Physical Database Design

 Purpose - translate the logical description

of data into the technical specifications for

storing and retrieving data

 Goal - create a design for storing data that

will provide adequate performance and

insure database integrity, security and

recoverability

Chapter 6 4
© Prentice Hall, 2002

Physical Design Process

Normalized relations

Volume estimates

Attribute definitions

Response time expectations

Data security needs

Backup/recovery needs

Integrity expectations

DBMS technology used

Inputs

Attribute data types

Physical record descriptions

(doesn’t always match logical

design)

File organizations

Indexes and database

architectures

Query optimization

Leads to

Decisions

Chapter 6 5
© Prentice Hall, 2002

Figure 6.1 - Composite usage map

(Pine Valley Furniture Company)

Chapter 6 6
© Prentice Hall, 2002

Figure 6.1 - Composite usage map

(Pine Valley Furniture Company)

Data volumes

Chapter 6 7
© Prentice Hall, 2002

Figure 6.1 - Composite usage map

(Pine Valley Furniture Company)

Access Frequencies

(per hour)

Chapter 6 8
© Prentice Hall, 2002

Figure 6.1 - Composite usage map

(Pine Valley Furniture Company)

Usage analysis:
200 purchased parts accessed

per hour

80 quotations accessed from

these 200 purchased part

accesses 

70 suppliers accessed from

these 80 quotation accesses

Chapter 6 9
© Prentice Hall, 2002

Figure 6.1 - Composite usage map

(Pine Valley Furniture Company)

Usage analysis:
75 suppliers accessed per

hour

40 quotations accessed from

these 75 supplier accesses 

40 purchased parts accessed

from these 40 quotation

accesses

Chapter 6 10
© Prentice Hall, 2002

Designing Fields

Field: smallest unit of data in

database

Field design

– Choosing data type

– Coding, compression, encryption

– Controlling data integrity

Chapter 6 11
© Prentice Hall, 2002

Choosing Data Types

 CHAR – fixed-length character

 VARCHAR2 – variable-length character
(memo)

 LONG – large number

 NUMBER – positive/negative number

 DATE – actual date

 BLOB – binary large object (good for
graphics, sound clips, etc.)

Chapter 6 12
© Prentice Hall, 2002

Figure 6.2

Example code-look-up table (Pine Valley Furniture Company)

Code saves space, but costs

an additional lookup to

obtain actual value.

Chapter 6 13
© Prentice Hall, 2002

Field Data Integrity

 Default value - assumed value if no explicit value 

reduce data entry

 Range control – allowable value limitations (constraints

or validation rules)  careful, ex: causing Year 2000
problem (year in 00 to 99 only)

 Null value control – allowing or prohibiting empty fields

 Referential integrity – range control (and null value
allowances) for foreign-key to primary-key match-ups

Chapter 6 14
© Prentice Hall, 2002

Handling Missing Data

 Substitute an estimate of the missing value (e.g.
using a formula: mean/interpolation) but give
mark

 Construct a report listing missing values

 In programs, ignore missing data unless the value
is significant

Triggers can be used to perform these operations

Chapter 6 15
© Prentice Hall, 2002

Physical Records

 Physical Record: A group of fields stored in

adjacent memory locations and retrieved

together as a unit

 Page: The amount of data read or written in

one I/O operation

 Blocking Factor: The number of physical

records per page

Chapter 6 16
© Prentice Hall, 2002

Denormalization

 Transforming normalized relations into unnormalized physical
record specifications

 Benefits:

– Can improve performance (speed) be reducing number of table lookups
(i.e reduce number of necessary join queries)

 Costs (due to data duplication)

– Wasted storage space

– Data integrity/consistency threats

 Common denormalization opportunities

– One-to-one relationship (Fig 6.3)

– Many-to-many relationship with attributes (Fig. 6.4)

– Reference data (1:N relationship where 1-side has data not used in any
other relationship) (Fig. 6.5)

Chapter 6 17
© Prentice Hall, 2002

Fig 6.5 –
A possible

denormalization

situation:

reference data

Extra table

access

required

Data duplication

Chapter 6 18
© Prentice Hall, 2002

Partitioning
 Horizontal Partitioning: Distributing the rows of a table

into several separate files

– Useful for situations where different users need access to different
rows

– Three types: Key Range Partitioning, Hash Partitioning, or
Composite Partitioning

 Vertical Partitioning: Distributing the columns of a table
into several separate files

– Useful for situations where different users need access to different
columns

– The primary key must be repeated in each file

 Combinations of Horizontal and Vertical

Partitions often correspond with User Schemas (user views)

Chapter 6 19
© Prentice Hall, 2002

Partitioning

 Advantages of Partitioning:
– Records used together are grouped together

– Each partition can be optimized for performance

– Security, recovery

– Partitions stored on different disks: contention

– Take advantage of parallel processing capability

 Disadvantages of Partitioning:
– Slow retrievals across partitions

– Complexity

Chapter 6 20
© Prentice Hall, 2002

Data Replication

 Purposely storing the same data in multiple
locations of the database

 Improves performance by allowing multiple
users to access the same data at the same
time with minimum contention

 Sacrifices data integrity due to data
duplication

 Best for data that is not updated often

Chapter 6 21
© Prentice Hall, 2002

Designing Physical Files

 Physical File:

– A named portion of secondary memory allocated for the
purpose of storing physical records

 Constructs to link two pieces of data:

– Sequential storage.

– Pointers.

 File Organization:

– How the files are arranged on the disk.

 Access Method:

– How the data can be retrieved based on the file
organization.

Chapter 6 22
© Prentice Hall, 2002

Figure 6-7 (a)

Sequential file

organization

If not sorted
Average time to find

desired record = n/2.

1

2

n

 Records of the

file are stored in

sequence by the

primary key

field values.

If sorted –
every insert or

delete requires

resort

Chapter 6 23
© Prentice Hall, 2002

Indexed File Organizations
 Index – a separate table that contains organization

of records for quick retrieval

 Primary keys are automatically indexed

 Oracle has a CREATE INDEX operation, and MS
ACCESS allows indexes to be created for most
field types

 Indexing approaches:

– B-tree index, Fig. 6-7b

– Bitmap index, Fig. 6-8

– Hash Index, Fig. 6-7c

– Join Index, Fig 6-9

Chapter 6 24
© Prentice Hall, 2002

Fig. 6-7b – B-tree index

uses a tree search
Average time to find desired

record = depth of the tree

Leaves of the tree

are all at same

level 

consistent access

time

Chapter 6 25
© Prentice Hall, 2002

Fig 6-7c

Hashed file or

index

organization

Hash algorithm
Usually uses division-

remainder to determine

record position. Records

with same position are

grouped in lists.

Chapter 6 26
© Prentice Hall, 2002

Fig 6-8

Bitmap index

index

organization

Bitmap saves on space requirements
Rows - possible values of the attribute

Columns - table rows

Bit indicates whether the attribute of a row has the values

Chapter 6 27
© Prentice Hall, 2002

Fig 6-9 Join Index – speeds up join operations

Chapter 6 28
© Prentice Hall, 2002

Clustering Files

 In some relational DBMSs, related records from
different tables can be stored together in the same
disk area

 Useful for improving performance of join
operations

 Primary key records of the main table are stored
adjacent to associated foreign key records of the
dependent table

 e.g. Oracle has a CREATE CLUSTER command

Chapter 6 29
© Prentice Hall, 2002

Rules for Using Indexes

1. Use on larger tables

2. Index the primary key of each table

3. Index search fields (fields frequently in
WHERE clause)

4. Index fields in SQL ORDER BY and
GROUP BY commands

5. When there are >100 values but not when
there are <30 values

Chapter 6 30
© Prentice Hall, 2002

Rules for Using Indexes

6. DBMS may have limit on number of
indexes (mostly 16) per table and number of
bytes per indexed field(s)

7. Null values will not be referenced from an
index

8. Use indexes heavily for non-volatile
databases; limit the use of indexes for
volatile databases

Why? Because modifications (e.g. inserts,
deletes) require updates to occur in index files

Chapter 6 31
© Prentice Hall, 2002

RAID

 Redundant Array of Inexpensive Disks

 A set of disk drives that appear to the user

to be a single disk drive

 Allows parallel access to data (improves

access speed)

 Pages are arranged in stripes

Chapter 6 32
© Prentice Hall, 2002

Figure 6-10 –

RAID with four

disks and

striping

Here, pages 1-4

can be

read/written

simultaneously

Chapter 6 33
© Prentice Hall, 2002

Raid Types (Figure 6-11)

 Raid 0
– Maximized parallelism

– No redundancy

– No error correction

– no fault-tolerance

 Raid 1
– Redundant data – fault tolerant

– Most common form

 Raid 2
– No redundancy

– One record spans across data
disks

– Error correction in multiple
disks– reconstruct damaged data

 Raid 3
– Error correction in one disk

– Record spans multiple data disks (more
than RAID2)

– Not good for multi-user environments,

 Raid 4
– Error correction in one disk

– Multiple records per stripe

– Parallelism, but slow updates due to
error correction contention

 Raid 5
‒ Rotating parity array

‒ Error correction takes place in same disks as
data storage

‒ Parallelism, better performance than Raid4

Chapter 6 34
© Prentice Hall, 2002

D
a
ta

b
a
s
e
 A

rc
h
it
e
c
tu

re
s

(f
ig

u
re

 6
-1

2
Legacy

Systems

Current

Technology

Data

Warehouses

Chapter 6 35
© Prentice Hall, 2002

Query Optimization

 Parallel Query Processing

 Override Automatic Query Optimization

 Data Block Size -- Performance tradeoffs:
– Block contention

– Random vs. sequential row access speed

– Row size  match block size with physical table row size

– Overhead  small block size produce more overhead

 Balancing I/O Across Disk Controllers

Chapter 6 36
© Prentice Hall, 2002

Query Optimization

 Wise use of indexes

 Compatible data types

 Simple queries

 Avoid query nesting

 Temporary tables for query groups

 Select only needed columns

 No sort without index

