Chapter 7: Structural Modeling

John Wiley & Sons, Inc.
Copyright 2005
Copyright © 2005
John Wiley & Sons, Inc.

- All rights reserved. Reproduction or translation of this work beyond that permitted in Section 117 of the 1976 United States Copyright Act without the express written permission of the copyright owner is unlawful.
- Request for further information should be addressed to the Permissions Department, John Wiley & Sons, Inc.
- The purchaser may make back-up copies for his/her own use only and not for redistribution or resale.
- The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these programs or from the use of the information contained herein.
Structural Modeling

Chapter 7
Key Ideas

- A structural or conceptual model describes the structure of the data that supports the business processes in an organization.

- The structure of data used in the system is represented through **CRD cards**, **class diagrams**, and **object diagrams**.
STRUCTURAL MODELS
Purpose of Structural Models

- Reduce the “semantic gap” between the real world and the world of software
- Create a vocabulary for analysts and users
- Represent things, ideas, and concepts of importance in the application domain
Classes

- Templates for creating instances or objects
 - Concrete
 - Abstract
- Typical examples:
 - Application domain, user interface, data structure, file structure, operating environment, document, and multimedia classes
Attributes

- Units of information relevant to the description of the class
- Only attributes important to the task should be included
Operations

- Action that instances/objects can take
- Focus on relevant problem-specific operations (at this point)
Relationships

- Generalization
 - Enables inheritance of attributes and operations
- Aggregation
 - Relates parts to wholes
- Association
 - Miscellaneous relationships between classes
Your Turn

- What classes, attributes, and operations that would be required to describe the process of registration for campus housing?
CLASS-RESPONSIBILITY-COLLABORATION CARDS
Responsibilities and Collaborations

- Responsibilities
 - Knowing
 - Doing
- Collaboration
 - Objects working together to service a request
A CRC Card

Front:

Class Name: Patient
ID: 3
Type: Concrete, Domain
Description: An Individual that needs to receive or has received medical attention
Associated Use Cases: 2

Responsibilities

- Make appointment
- Calculate last visit
- Change status
- Provide medical history

Collaborators

- Appointment
- Medical history
Back of CRC Card

<table>
<thead>
<tr>
<th>Attributes:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount (double)</td>
<td></td>
</tr>
<tr>
<td>Insurance carrier (text)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relationships:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Generalization (a-kind-of):</td>
<td>Person</td>
</tr>
<tr>
<td>Aggregation (has-parts):</td>
<td>Medical History</td>
</tr>
<tr>
<td>Other Associations:</td>
<td>Appointment</td>
</tr>
</tbody>
</table>
CLASS DIAGRAMS
Example Class Diagram
Class Diagram Syntax

<table>
<thead>
<tr>
<th>A CLASS</th>
<th>Class 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-attribute</td>
</tr>
<tr>
<td></td>
<td>+operation ()</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AN ATTRIBUTE</th>
<th>Attribute name/ derived attribute name</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>AN OPERATION</th>
<th>operation name ()</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>AN ASSOCIATION</th>
<th>1..* 0..1 verb phrase</th>
</tr>
</thead>
</table>
More on Attributes

- Derived attributes
 - /age, for example can be calculated from birth date and current date

- Visibility
 - Public
 - Protected
 - Private
More on Operations

- Constructor
 - Creates object

- Query
 - Makes information about state available

- Update
 - Changes values of some or all attributes
Generalization and Aggregation

- Generalization shows that a subclass inherits from a superclass
 - Doctors, nurses, admin personnel are kinds of employees
- Aggregation classes comprise other classes
 - Health team class comprised of doctor, nurses, admin personnel classes
More on Relationships

- Class can be related to itself (role)
- Multiplicity
 - Exactly one, zero or more, one or more, zero or one, specified range, multiple disjoint ranges
- Association class
Simplifying Class Diagrams

- The view mechanism shows a subset of information
- Packages show aggregations of classes (or any elements in UML)
FIGURE 7-5 Example Object Diagram

Slide 24

Object Diagrams

- **Patient**
 - amount
 - insurance carrier
 + make appointment()
 + calculate last visit()
 + change status()
 + provide medical history()

- **Appointment**
 - time
 - date
 - reason
 + cancel without notice()

- **Doctor**

- **Symptom**
 - name

Example: John Doe: Patient
- lastname = “Doe”
- firstname = “John”
- address = “1000 Main Street”
- phone = “555-555-5555”
- birthdate = 01/01/72
- age = 32
- amount = $0.00
- insurance carrier = “1ID Health Insurance”

Example: Appt1: Appointment
- time = 3:00
- date = 7/7/2004
- reason = “pain in neck”

Example: Dr. Smith: Doctor
- lastname = “Smith”
- firstname = “Jane”
- address = “Doctor’s Clinic”
- phone = “999-555-5555”
- birthdate = 12/12/64
- age = 39

Example: Symptom1: Symptom
- name = “muscle pain”
CREATING CRC CARDS AND CLASS DIAGRAMS
Object Identification

- Textual analysis of use-case information
 - Nouns suggest classes
 - Verbs suggest operations
- Creates a rough first cut
- Common object list
- Incidents
- Roles
Patterns

- Useful groupings of classes that recur in various situations

Transactions
- Transaction class
- Transaction line item class
- Item class
- Location class
- Participant class
Steps for Object Identification and Structural Modeling

1. Create CRC cards by performing textual analysis on the use-cases.
2. Brainstorm additional candidate classes, attributes, operations, and relationships by using the common object list approach.
3. Role-play each use-case using the CRC cards.
4. Create the class diagram based on the CRC cards.
5. Review the structural model for missing and/or unnecessary classes, attributes, operations, and relationships.
6. Incorporate useful patterns.
7. Review the structural model.
Create CRC cards.
Examine common object lists.
Role-play the CRC cards.
Create the class diagram.
Review the class diagram.
Incorporate patterns.
Review the model.
CD Selections

Slide 31

Dennis: SAD
Fig: 7-12 W-29 100% of size
Fine Line Illustrations (516) 501-0400
Summary

- **CRC cards** capture the essential elements of a class.
- **Class and object diagrams** show the underlying structure of an object-oriented system.
- Constructing the structural model is an iterative process involving: *textual analysis, brainstorming objects, role playing, creating the diagrams, and incorporating useful patterns.*
Expanding the Domain

- A quirky and interesting tutorial regarding CRC cards can be found at:
 - http://www.csc.calpoly.edu/~dbutler/tutorials/winter96/crc_b/
EOC Question Chapter 7

1. Describe to a businessperson the multiplicity of a relationship between two classes.
2. Why are assumptions important to a structural model?
3. What is an association class?
4. Contrast the following sets of terms:
 - Object; Class; Instance
 - Property; Method; Attribute
 - Superclass; Subclass
 - Concrete Class; Abstract Class
5. Give three examples of derived attributes that may exist on a class diagram. How would they be denoted on the class diagram?
EOC Question Chapter 7

6. What are the different types of visibility? How would they be denoted on a class diagram?

7. Draw the relationships that are described by the following business rules. Include the multiplicities for each relationship.

A patient must be assigned to only one doctor, and a doctor can have one or many patients.

An employee has one phone extension, and a unique phone extension is assigned to an employee.

A movie theater shows at least one movie, and a movie can be shown at up to four other movie theaters around town.

A movie either has one star, two co-stars, or more than ten people starring together. A star must be in at least one movie.
EOC Question Chapter 7

8. How do you designate the reading direction of a relationship on a class diagram?

9. For what purpose is an association class used in a class diagram? Give an example of an association class that may be found in a class diagram that captures students and the courses that they have taken.

10. Give two examples of aggregation, generalization, and association relationships. How is each type of association depicted on a class diagram?
EOC Question Chapter 7

11. Identify the following operations as constructor, query, or update. Which operations would not need to be shown in the class rectangle?

- Calculate employee raise (raise percent)
- Calculate sick days()
- Increment number of employee vacation days()
- Locate employee name()
- Place request for vacation (vacation day)
- Find employee address()
- Insert employee()
- Change employee address()
- Insert spouse()